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Abstract—This paper presents an AI-powered code review system designed to assist developers by 
providing real-time, intelligent feedback on software code. The system integrates advanced language 
models via OpenAI and Hugging Face APIs within a secure Java Spring Boot backend, using AES-256 
encryption for data privacy and JWT for secure user authentication. A key feature is its intelligent fallback 
mechanism: when OpenAI is unavailable, the system seamlessly switches to Hugging Face, ensuring high 
availability and responsiveness. The frontend, built with React.js, offers a smooth and interactive user 
experience. Evaluation results show the system delivers over 90% accurate and relevant feedback, with 
average response times under 2 seconds. This solution supports developers by automating routine review 
tasks while preserving human oversight, ultimately enhancing code quality and accelerating development 
workflows. 
 
Index Terms— Code Review; Artificial Intelligence; Spring Boot; Hugging Face; Software Quality. 
 

I. INTRODUCTION  
 In today’s fast-paced development environment, maintaining code quality is vital for building secure and 
maintainable software. Traditional manual code reviews often suffer from delays, inconsistencies, and 
subjective judgments, especially in large, distributed teams. While static analysis tools help enforce syntax 
and style rules, they fall short in understanding code context and semantics. This paper presents an AI-
powered code review system that leverages Large Language Models (LLMs) like OpenAI’s GPT and Hugging 
Face transformers to automate and enhance code reviews. The system is built on a Spring Boot backend with 
AES-256 encryption for secure code handling and includes a fallback mechanism to switch between AI APIs 
for high availability. It provides actionable, context-aware feedback to reduce human workload and support 
developer learning. Designed to complement—not replace—human reviewers, the system aims to improve 
code quality, accelerate development, and make AI a collaborative tool in software engineering. 
 
Research Objectives 

• To design and implement an AI-driven system capable of performing real-time code reviews. 
• To assess the effectiveness of large language models in identifying common programming issues and 

suggesting improvements. 
• To compare the AI-generated reviews with traditional human reviews based on clarity, accuracy, and 

usefulness. 
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Research Hypothesis 
The study hypothesizes that an AI-powered code review system, when properly trained and integrated, can 
 
deliver feedback comparable in quality to human reviewers, with significantly reduced turnaround time and 
increased consistency. 

 

II. ABBREVIATIONS AND ACRONYMS 
AI – Artificial Intelligence, 
API – Application Programming Interface, 
AES – Advanced Encryption Standard, 
JWT – JSON Web Token, 
LLM – Large Language Model, 
NLP – Natural Language Processing, 
UI – User Interface, 
UX – User Experience, 
DB – Database, 
HTTP – Hypertext Transfer Protocol, 
AWS – Amazon Web Services 
 

III. LITERATURE REVIEW 
Code review is a key phase in the software development lifecycle, used to detect bugs, enforce coding 

standards, and improve maintainability. While manual reviews have traditionally fulfilled this role, they are 
often time-consuming, inconsistent, and heavily dependent on the reviewer’s expertise—especially as modern 
codebases grow in size and complexity. 
To reduce these burdens, static analysis tools like SonarQube, FindBugs, and ESLint emerged. Though 
effective at identifying syntactic and stylistic issues, these tools rely on rule-based logic and lack deeper 
semantic understanding. They struggle to provide contextual or architectural insights, limiting their usefulness 
in complex review tasks. 
Recent research has turned toward integrating machine learning (ML) and natural language processing 
(NLP) into code analysis. For instance, Tufano et al. [1] used deep learning to detect function similarities, and 
Chen and Monperrus [2] surveyed ML techniques for automatic program repair. Darwin and Singh [3] 
combined ML with static analysis to detect Java-specific issues. Meanwhile, Liu et al. [4] evaluated 
transformer-based models like CodeBERT and GPT-3, which have shown potential in bug detection, 
summarization, and code generation. 
However, existing solutions fall short in replicating a human reviewer’s full capability. Most models focus on 
isolated tasks such as autocomplete or syntax correction, not structured multi-dimensional feedback. 
Furthermore, issues like data privacy, secure code handling, and API reliability are rarely addressed. 
This paper aims to bridge these gaps by proposing a robust, AI-powered code review system that: 

• Offers contextual feedback using large language models 
• Protects code through AES-256 encryption 
• Maintains availability via an API fallback mechanism 

By doing so, it advances both the practicality and security of AI-assisted code review tools. 
 

IV. METHODOLOGY 
This section outlines the research methods, data collection procedures, analysis techniques, and ethical 

considerations followed in the development and evaluation of the AI-powered code review system. 
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IV.I. Research Methods 
   This study follows an experimental system design methodology aimed at building and evaluating a software 
tool that automates code review using artificial intelligence. The system is implemented as a web-based 
application, composed of three major components: 
 
Frontend Interface: Built using React.js for user interaction and submission of code. 
Backend Server: Developed in Java using Spring Boot, handling encryption, authentication, and API 
communication. 
AI Integration Layer: Interfaces with OpenAI and Hugging Face APIs to analyze submitted code and return 
feedback. 
The design process includes the following phases: 

1. System Architecture Design: A modular structure was created to ensure scalability and integration 
flexibility. 

2. Implementation: All components were developed and integrated to form a working prototype. 
3. Testing: The system was tested with various code samples to evaluate the AI-generated feedback. 
4. Evaluation: Quantitative and qualitative methods were used to compare AI feedback with human 

reviews. 
 
IV.II. Data Collection Procedures 

To evaluate the system's effectiveness, a dataset of 50 code samples was compiled from the following 
sources: 

• Open-source repositories (e.g., GitHub) 
• Online programming tutorials 
• Classroom assignments and student projects 

The dataset includes code written in Java, Python, and JavaScript. The samples were selected to represent a 
variety of logic structures, levels of complexity, and both syntactically correct and buggy code. 
Each sample was reviewed by: 

• The AI-powered code review system 
• A human reviewer (professional developer) 

All reviews were recorded and annotated to allow comparison and scoring based on clarity, correctness, and 
usefulness. 
 
IV.III. Analysis Techniques 

To assess the performance of the AI system, the following quantitative evaluation metrics were applied: 
• Precision: Ratio of relevant feedback identified by the AI to the total feedback generated. 
• Recall: Ratio of relevant issues identified by the AI to the total issues present in the code. 
• F1 Score: Harmonic mean of precision and recall, representing overall accuracy. 
• Response Time: Average time taken by the AI to generate a response. 

Additionally, a qualitative assessment was conducted using feedback from 5 professional developers who 
tested the tool and scored: 

• Feedback clarity 
• Usefulness of suggestions 
• Overall satisfaction 

Statistical averages were calculated to interpret the AI’s effectiveness compared to human review performance. 
 
IV.IV Ethical Considerations 

This study involved no human subjects, user interviews, or sensitive personal data. All test code samples 
used were either: 

• Openly licensed via GitHub 
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• Artificially created for testing 
• Non-functional snippets without any identifying or proprietary information 

To ensure data security and privacy, the system encrypts all submitted code using AES-256, a widely 
accepted symmetric encryption standard. Encryption keys are managed securely within the backend 
environment and are never exposed to AI services. 
Additionally, the system adheres to ethical AI principles: 

• No data is stored after review unless explicitly permitted by the user. 
• API calls are logged anonymously for performance tracking. 
• The system is designed to augment, not replace, human reviewers. 

In cases where copyrighted libraries or large blocks of code were tested, proper citation and reference were 
maintained. 

V. RESULTS AND DISCUSSION 
This section presents the findings from evaluating the proposed AI-powered code review system. The 

analysis covers performance metrics, response quality, and comparison with manual human reviews. Results 
are interpreted both quantitatively and qualitatively, and cross-referenced with existing literature. 
 
V.I. Evaluation Setup 

The system was tested on a dataset of 50 code snippets, extracted from GitHub repositories, academic 
exercises, and online tutorials. The programming languages included: 

• Python 
• Java 
• JavaScript 

Each snippet was subjected to: 
• AI-based review (using OpenAI and Hugging Face APIs) 
• Manual review by experienced developers (used as benchmark) 

Performance was evaluated on bug detection, feedback clarity, and turnaround time. 
 
V.II.Performance Results 
Table 1 summarizes the precision, recall, and F1-score of the AI-generated feedback compared to human 
reviewers. 
 

Table 1. Comparison of Review Performance 

Review Method Precision Recall F1 Score Avg. Time (sec) 

Human Reviewer 96% 94% 95% 78 

OpenAI GPT Model 91% 86% 88.4% 2.3 

Hugging Face LLM 82% 76% 78.9% 1.9 
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                                                Figure 1. Performance Metrics Comparison 
 
These results indicate that OpenAI GPT-based review provides close to human-level accuracy on standard 
programming tasks, while delivering feedback within seconds. Hugging Face models were faster but showed 
slightly lower accuracy. 
 

V.III.Sample Code Review with AI Feedback 

Example 1 : Python Code with bugg 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        Figure 2. Review Output 
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Example 2 : Java Code with no bugg 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                            Figure 3. Review Output 
 
Interpretation: 

This demonstrates the AI's ability to identify: 
• Logical flaws (wrong recursion) 
• Syntax errors 
• Misused operators 

Such nuanced identification confirms that AI is capable of semantic-level code understanding — beyond 
what traditional linters can detect. 
 

VI. CONCLUSION 
This research introduced a secure and intelligent AI-powered code review system that leverages large 

language models (LLMs) from OpenAI and Hugging Face to assist in the review of software source code. The 
system was developed with a focus on security (using AES-256 encryption), scalability (RESTful Spring Boot 
backend with fallback API logic), and educational value (clear, contextual feedback). It significantly reduces 
the time and effort required in traditional code reviews while offering comparable levels of accuracy for routine 
code issues. 
VI.I. Summary of Key Findings 

• The system achieved precision and recall scores above 85%, with performance closely approaching 
human reviewers for standard bugs and syntax errors. 

• OpenAI's model outperformed Hugging Face in accuracy but both offered near-instant feedback, with 
an average response time of under 3 seconds. 

• User feedback from developers indicated high satisfaction, especially in terms of clarity, speed, and 
usefulness of the suggestions. 
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• The fallback mechanism ensures uninterrupted AI access even if one provider fails, enhancing 
reliability. 

• The use of AES-256 encryption for code privacy adds a critical layer of trust for enterprise and 
educational deployment. 

 
VI.II. Implications for Theory and Practice 

From a theoretical standpoint, this work demonstrates how transformer-based LLMs can extend beyond 
code generation into context-aware, feedback-centric code analysis, bridging the gap between machine 
reasoning and human judgment. Practically, it provides a tool for developers, educators, and teams to scale 
code review processes while maintaining quality. 
This research also supports the growing narrative that AI should augment, not replace, human reviewers, 
and can serve as a tutor for novice programmers. 
 
VI.III.Limitations of the Study 

• The system currently supports only three programming languages (Python, Java, JavaScript), which 
limits broader applicability. 

• The AI may struggle with advanced architectural or algorithmic flaws, where human experience is still 
irreplaceable. 

• Evaluation was performed on a moderate dataset (50 samples); larger-scale testing would offer deeper 
insights. 

• AI review quality is dependent on prompt engineering and API stability. 
 
VI.IV.Recommendations for Future Research 

• Extend the system to support more languages, including C++, Kotlin, and TypeScript. 
• Integrate with IDEs (e.g., VS Code plugins) to make it part of real-time development environments. 
• Explore the use of custom fine-tuned LLMs specifically trained on code review data for improved 

accuracy. 
• Conduct longitudinal studies to measure learning gains in students or junior developers using the 

system. 
• Investigate multi-agent AI collaboration, where different models vote or combine feedback to improve 

output quality. 
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